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Abstract
We obtain a complete and minimal set of 170 generators for the algebra of
SL(2, C)×4 covariants of a binary quadrilinear form. Interpreted in terms of
a four qubit system, this describes in particular the algebraic varieties formed
by the orbits of local filtering operations in its projective Hilbert space. Also,
this sheds some light on the local unitary invariants, and provides all the
possible building blocks for the construction of entanglement measures for
such a system.

PACS numbers: 02.20.Qs, 03.65.Ud, 02.10.Xm

1. Introduction

The invariant theory of fourth rank hypermatrices (or quadrilinear forms) over a two-
dimensional complex vector space, already considered at the end of the nineteenth century,
has recently experienced a resurgence of interest, mainly due to its potential applications to the
understanding of entanglement in four qubit systems [9, 11, 17, 21]. We shall give here the first
complete solution to the problem of describing the polynomial covariants, an investigation
started by Le Paige as early as 1881 [7]. The theory was further advanced by Segre in
1922 [16], using only geometric methods which led him close to a complete classification
of the orbits. Such a complete classification was obtained only recently by Verstraete et al
[21], by exploiting the local isomorphism between SO4 and SL2 × SL2, which permits a
reduction of the problem to the classification of complex symmetric matrices up to orthogonal
transformations.

A complete picture would require a description of the orbit closures as algebraic varieties
and an understanding of their ordering with respect to inclusion. In classical invariant theory,
such descriptions were usually given in terms of invariants and covariants. The main result
of [9] was a complete description of the algebra of polynomial functions f (aijkl) in the
components of a four qubit state

|�〉 =
1∑

i,j,k,l=0

aijkl|i〉 ⊗ |j 〉 ⊗ |k〉 ⊗ |l〉 (1)
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which are invariant under the natural action of the so-called SLOCC1 group G = SL(2, C)×4

on the local Hilbert space H = V ⊗4, where V = C
2.

One motivation for this investigation was to test on the four qubit case Klyachko’s proposed
definitions of entanglement and complete entanglement [5]. These consist in identifying
entangled states as being precisely those for which at least one SLOCC polynomial invariant
is not zero, and completely entangled states as the vectors of minimal norm in closed SLOCC
orbits, which are unique up to local unitary transformations.

Klyachko’s definition of complete entanglement seems to be supported by the recent
numerical experiments of Verstraete et al [22]. Indeed, these authors propose a numerical
algorithm converging to a normal form, which, in the case of a stable state, is a state of minimal
norm in its SLOCC orbit O, and otherwise in the unique closed orbit contained in the closure
Ō. Thus, in both cases, the normal form is a completely entangled state in the sense of [5].

We take the opportunity to point out that, as conjectured in [22], the normal form is indeed
unique up to local unitary transformations2.

In [9], the polynomial invariants were constructed by means of the classical notion of a
covariant. If we interpret our state |�〉 as a quadrilinear form

f (x, y, z, t) =
1∑

i,j,k,l=0

aijklxiyj zktl (2)

on V × V × V × V , a covariant of f is a multi- homogeneous G-invariant polynomial in the
form coefficients aijkl and in the original variables xi, yj , zk, tl .

Since the spaces Sµ(V ) (µ ∈ N
4) of homogeneous polynomials of multidegree µ in

x, y, z, t exhaust all finite-dimensional representations of G, a covariant of degree d in aijkl

and µ in the variables can be regarded as a G-equivariant map Sd(H) → Sµ(V ) from the
space Sd(H) of homogeneous polynomials of degree d in A to the irreducible representation
Sµ(V ). Such a map is determined by the image of a highest weight vector, so that covariants
are in one to one correspondence with highest weight vectors in Sd(H), these being known as
semi-invariants in the classical language (cf [12]).

The covariants form an algebra, which is naturally graded with respect to d and µ. We
denote by Cd;µ the corresponding graded pieces. Knowledge of their dimensions cd;µ is
equivalent to the decomposition of the character of Sd(H) into irreducible characters of G,
and knowledge of a basis of Cd;µ allows one to write a Clebsch–Gordan series with respect
to G for any polynomial in aijkl . Also, it is known that the equations of any G-invariant
closed subvariety of the projective space P(H) are given by the simultaneous vanishing of the
coefficients of some covariants.

Finally, let us point out a connection with the approach of [3] and local unitary invariants.
The spaces Sµ(V ), and hence Cd;µ are also Hilbert spaces in a natural way. If �α

d;µ is a

linear basis of Cd;µ, the scalar products
〈
�α

d;µ
∣∣�β

d;µ
〉

(taken with respect to the variables, the
coefficients aijkl being treated as scalars) form a basis of the space of U(2)×4 invariants of
degree 2d (that is, d in A and d in Ā), and

〈
�α

d;µ
∣∣�β

e;µ
〉

form a basis of the space of SU(2)×4

invariants of bidegree (d, e) in (A, Ā). Such expressions are used for example in [1], in the
case of three qubits.

1 For stochastic local operations assisted by classical communication, see [1].
2 The results implying this conjecture, as well as the necessary background in geometric invariant theory, are collected
in [23]: the Kempf–Ness criterion (theorem 6.18) proves the result in the case of a closed orbit, and by the corollary
of theorem 4.7, there is a unique closed orbit in the closure of an arbitrary orbit.
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2. Summary of method and results

A minimal generating set consisting of 170 covariants is found by means of a computer search
through iterated transvectants (see section 3), guided by the knowledge of the Hilbert series
(see section 4), and simplified by taking into account some special properties of multilinear
forms. The following table gives the number of covariants of degree d in A and multidegree
λ in the variables, where λ is in nondecreasing order. There are similar covariants for each of
the nλ permutations µ of the degrees. For example, in degree 5, we have 12 covariants which
are cubic in one variable and linear in the other three, and one quadrilinear covariant.

λ\d nλ 1 2 3 4 5 6 7 8 9 10 11 12
0000 1 1 2 1
1111 1 1 2 1
2200 6 1 1 1
2220 4 2 2 2
3111 4 1 3 3 1
3311 6 1 2 1
4000 4 1 1
4200 12 1 1 1
5111 4 1 2 1
6000 4 1

(3)

3. Multiple transvectants

Transvectants, or Cayley’s omega process, are the basic tools for constructing complete
systems of covariants, and play a key role in Gordan and Hilbert’s proofs that the ring of
covariants is finitely generated. The notion of a transvectant extends with little modifications
to forms in several series of variables, and appears to have been first exploited by Le Paige [6]
in the case of binary trilinear forms, and by Peano [13], who computed the complete systems
for forms of bidegrees (1, 1), (2, 1) and (2, 2) in two independent binary variables. Complete
systems for bidegrees (3, 1) and (4, 1) have been given by Todd [18, 19], and, to the best
of our knowledge, the only forms in more than two binary variables for which the complete
system is known are (1, 1, 1) [6, 14, 15] and (2, 1, 1), due to Gilham [2]. The geometry of the
quadrilinear form is discussed by Segre [16] but no attempt is made to describe the covariants.

If f and g are forms in the binary variable x = (x1, x2), we identify their tensor product
f ⊗ g with the polynomial f (x′)g(x′′) in two independent binary variables x′, x′′. Following
[12], the multiplication map f ⊗ g �→ fg is denoted by tr. So, tr(f (x′)g(x′′)) = f (x)g(x).

The Cayley operator �x acts on such a tensor product by the differential operator

�x =
∣∣∣∣∣

∂
∂x ′

1

∂
∂x ′′

1
∂

∂x ′
2

∂
∂x ′′

2

∣∣∣∣∣. (4)

If f and g are two p-tuple forms in p independent binary variables xi , one defines for any
(i1, i2, . . . , ip) ∈ N

p a multiple transvectant of f and g by

(f, g)i1i2...ip = tr �
i1
1 �

i2
2 · · · �ip

p f (x′
1, . . . , x′

p)g(x′′
1, . . . , x′′

p) (5)

where �i = �xi
, and tr acts on all variables by x′

i , x′′
i �→ xi .
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It can be proved that the complete system of covariants of any number of forms can be
reached in a finite number of steps by building iterated transvectants, starting with the ground
forms.

4. The Hilbert series

The (multivariate) Hilbert series for the algebra of covariants is defined by

h(t, u1, u2, u3, u4) =
∑
d,µ

cd;µtduµ (6)

where cd;µ is the dimension of the space of homogeneous covariants which are of degree d in
aijkl and of multidegree µ in the variables. Let

S =
4∏

i=1

(
1 − u−2

i

) ∏
α∈{−1,1}4

(1 − uαt)−1. (7)

Here S has to be considered as the formal power series obtained by expansion with respect
to the variable t. Let L be the linear operator acting on a formal series in t, u by leaving
unchanged every monomial tduµ with µ ∈ N

4, and annihilating those with u-exponent having
a negative coordinate. It follows from standard considerations about the characters of G that
h = LS.

By successive decompositions into partial fractions (with respect to u1, next u2, u3, u4)
we have computed this series, which guided us in the search for the covariants. The numerator
is too large to be printed, but if one substitutes u1 = u2 = u3 = u4 = u, one finds after
simplification h = P/Q, where the numerator P is

1 − u2t + (3u4 − 2u2)t2 + (u6 + 4u4)t3 + (10u4 − u2)t4 + (−4u8 − 2u6 + 2u4)t5

+ (2u10 + 6u8 − 2u6 + 8u4)t6 + (2u10 + 6u8)t7

+ (−8u12 + u10 + 13u8 − 2u6 + 4u4)t8 + (−8u12 − u10 + 12u8 − u6)t9

+ (2u14 − 13u12 + 13u8 − 2u6)t10 + (u14 − 12u12 + u10 + 8u8)t11

+ (−4u16 + 2u14 − 13u12 − u10 + 8u8)t12 + (−6u12 − 2u10)t13

+ (−8u16 + 2u14 − 6u12 − 2u10)t14 + (−2u16 + 2u14 + 4u12)t15

+ (u18 − 10u16)t16 + (−4u16 − u14)t17 + (2u18 − 3u16)t18 + u18t19 − u20t20

and the denominator Q is

(1 − tu2)(1 − tu4)(1 − t2)(1 − t2u2)2(1 − t2u4)3(1 − t4)(1 − t4u2)(1 − t4u4)(1 − t6).

The algebra of covariants is Cohen–Macaulay (see, e.g., [23]). This means that it is a
free module of finite rank over a subalgebra generated by a finite family of homogeneous,
algebraically independent elements f1, . . . , fk . Then k is the Krull dimension of the algebra
of covariants (the maximum number of algebraically independent elements) and h(t, t, t, t, t)

has a pole at t = 1, of order k. We found in this way that k = 12.
When substituting ui = 0, the Hilbert series of the invariants is recovered.

5. A fundamental set of covariants

The fundamental covariants are tabulated in appendix A. They are denoted by symbols Xm
pqrs ,

in which the letter X indicates the degree in the form coefficients aijkl (1 for A, 2 for B, etc),
the subscripts ijkl indicate the degrees in the variables x, y, z, t, and the optional exponent m
serves to distinguish between covariants having the same degrees.
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The only covariant of degree 1 is the ground form f = A1111. In degree 2, we have
one invariant, the basic hyperdeterminant H = 1

2B0000, which is defined in general for all
multilinear forms with an even number of variables (see [8] for some applications), and six
biquadratic forms such as B2200. In degree 3, we find two quadrilinear forms and four cubico-
trilinear covariants. There are three other invariants, which occur in degrees 4

(
D1

0000,D
2
0000

)
and 6 (F0000). The maximal degree is 12, where we find four binary sextics.

We see that some of the covariants are of a type for which the invariant theory is well
understood (binary forms of degrees 4 and 6, biquadratic forms), or are again quadrilinear
forms. Others are of essentially unexplored types (3111, 2220, 4200, 3311, 5111).

Naturally, the covariants of a covariant are again covariants (although not necessarily
irreducible). Some of these are discussed in appendix C.

Let us now sketch the application to the description of the orbit closures. The normal
forms obtained by Verstraete et al [21] are

Gabcd = a + d

2
(|0000〉 + |1111〉) +

a − d

2
(|0011〉 + |1100〉)

+
b + c

2
(|0101〉 + |1010〉) +

b − c

2
(|0110〉 + |1001〉)

Labc2 = a + b

2
(|0000〉 + |1111〉) +

a − b

2
(|0011〉 + |1100〉) + c(|0101〉 + |1010〉) + |0110〉

La2b2 = a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉) + |0110〉 + |0011〉
Lab3 = a(|0000〉 + |1111〉) +

a + b

2
(|0101〉 + |1010〉) +

a − b

2
(|0110〉 + |1001〉)

+
i√
2
(|0001〉 + |0010〉 + |0111〉 + |1011〉)

La4 = a(|0000〉 + |0101〉 + |1010〉 + |1111〉) + (i|0001〉 + |0110〉 − i|1011〉)
La203⊕1̄

= a(|0000〉 + |1111〉) + (|0011〉 + |0101〉 + |0110〉)
L05⊕3̄

= |0000〉 + |0101〉 + |1000〉 + |1110〉
L07⊕1̄

= |0000〉 + |1011〉 + |1101〉 + |1110〉
L03⊕1̄03⊕1̄

= |0000〉 + |0111〉
where in our notation a ket |ijkl〉 is to be identified with the monomial xiyj zktl . The invariants
B0000, D1

0000,D
2
0000 and F0000 are shown in [9] to separate the normal forms Gabcd, Labc2 , Lab3 ,

La2b2 , La4 and La203⊕1
. But they vanish for L05⊕3

, L07⊕1
and L03⊕103⊕1

. Knowledge of the
fundamental set of covariants is more than sufficient to separate the last three forms. Indeed,

C3111
(
L05⊕3

) = 2(x2y2z1t1 − x1y2z1t1) (8)

D2200
(
L05⊕3

) = 0 (9)

C3111
(
L07⊕1

) = 2x2(y1z1t2 + y1z2t1 − 2y2z1t1) (10)

D2200
(
L07⊕1

) = −16x2
2z1z2 (11)

C3111
(
L03⊕103⊕1

) = 0 (12)

D2200
(
L03⊕103⊕1

) = 0. (13)

From this, it is not difficult (although somewhat tedious) to obtain the equations of the closures
of the orbits, and to study the inclusions between them. This will be left for a future paper on
the subject, in which we expect to be able to produce first a better choice of the fundamental
covariants (with greater geometrical or physical significance).
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6. Rational covariants

The algebra of rational covariants is simpler than that of polynomial covariants. It is a field
of rational functions over 12 homogeneous independent generators. A way to compute a
fundamental set of rational semi-invariants consists in using the so-called associated forms
[10]. Let F be the polynomial obtained from the ground form by applying the following series
of substitutions:

x1 → a0000x1 − a1000x2, x2 → a0000x2

y1 → a0000y1 − a0100y2, y2 → a0000y2

z1 → a0000z1 − a0010z2, z2 → a0000z2

t1 → a0000t1 − a0001t2, t2 → a0000t2.

The semi-invariants which are the sources of the associated forms are the coefficients of the
monomials xiyj zktl in F, divided by a

9−i−j−k−l

0000 . We obtain in this way a list of semi-invariants
which are sources of some polynomial covariants given below. Here, H = 1

2 (f, f )1111,
bxy = 1

2 (f, f )0011, etc are as in [9].

Source cα Covariant Cα

c0000 1
c1000 0
c0100 0
c0010 0
c0001 0
c0011 bxy

c0101 bxz

c0110 bxt

c1001 byz

c1010 byt

c1100 bzt

c0111 −C3111

c1011 −C1311

c1101 −C1131

c1110 −C1113

c1111 Hf 2 − bxybzt − bxzbyt − bxtbyz

(14)

The 12 homogeneous independent generators of the field of rational covariants are the 11
non-trivial associated forms above, together with the ground form f . Actually, the last one
(C1111) can be advantageously replaced by H.

Now, each covariant can be written as a rational function in these 12 generators. It suffices
to make the substitutions

aijkl → Cijklf
1−(i+j+k+l) (15)

in the source of the covariant, where Cα is the covariant with source cα .
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For example, the source of D4000 is

2a0111a0100a0000a0011 − 4a0111a0010a0001a0010 − a2
0000a

2
0111 + 2a0111a0000a0001a0110

+ 2a0111a0000a0010a0101 + 2a0110a0001a0011a0100 − a2
0001a

2
0110

+ 2a0110a0001a0010a0101 − 4a0110a0011a0000a0101

+ 2a0101a0010a0011a0100 − a2
0010a

2
0101 − a2

0011a
2
0100

and the above substitutions give

D4000 = − 1

C2
0000

(
C2

0111 + 4C0110C0011C0101
)

= − 1

f 2

(
C2

3111 + 4bxtbxybxz

)
. (16)

This yields a syzygy

f 2D4000 + C2
3111 + 4bxybxzbxt = 0. (17)

7. Conclusion

It is remarkable that the investigation of the fine structure of the four qubit system has led
to the first complete solution of a mathematical problem which had already been considered
as early as 1881 [7]. This problem was among the very few which were out of reach of
the computational skills of the classical invariant theorists, though accessible to a computer
treatment. The number of fundamental covariants, here 170, is not, however, the highest ever
found3, and we expect to be able to produce in the near future a human readable proof, together
with a better choice of the generators, i.e., to find, at least for the lowest degrees, generators
with a transparent geometrical interpretation.

A complete description of the ring of covariants should in principle include a generating
set of the syzygies. However, we can see from the Hilbert series that this is a hopeless task, as
it is already for the previously known specializations. We have computed all the syzygies up
to degree 7, and formula (15) allows one to find at least one syzygy for each covariant which
is not one of the Cα .

Turning back to the issue of entanglement, we see that we have now at our disposal all the
possible building blocks for the construction of entanglement measures4 for systems with no
more than four qubits. It is to be expected that further investigations will allow one to select
the most relevant ones among them, and that the analysis of their geometric significance will
give a clue for the general case.

Appendix A. Fundamental covariants

Degree 2 Degree 3
Symbol Transvectant
B0000 (f, f )1111

B2200 (f, f )0011

B2020 (f, f )0101

B2002 (f, f )0110

B0220 (f, f )1001

B0202 (f, f )1010

B0022 (f, f )1100

Symbol Transvectant
C1

1111 (f, B2200)
1100

C2
1111 (f, B2020)

1010

C3111 (f, B2200)
0100

C1311 (f, B2200)
1000

C1131 (f, B2020)
1000

C1113 (f, B2002)
1000

3 For example, Turnbull obtained in 1910 a system of 784 forms for the case of three ternary quadratics, and in 1947,
Todd proved that 603 of them formed a complete minimal system.
4 At least, the geometrical ones.
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Degree 4

Symbol Transvectant

D1
0000

(
f,C1

1111

)1111

D2
0000

(
f,C2

1111

)1111

D2200 (f, C3111)
1011

D2020
(
f,C1

1111

)0101

D2002 (f, C3111)
1110

D0220 (f, C1311)
1101

D0202 (f, C1311)
1110

D0022 (f, C1131)
1110

Symbol Transvectant
D4000 (f, C3111)

0111

D0400 (f, C1311)
1011

D0040 (f, C1131)
1101

D0004 (f, C1113)
1110

D1
2220 (f, C1311)

0101

D2
2220

(
f,C1

1111

)0001

D1
2202 (f, C1113)

0011

D2
2202 (f, C1311)

0110

D1
2022 (f, C1113)

0101

D2
2022

(
f,C1

1111

)0100

D1
0222 (f, C1113)

1001

D2
0222 (f, C1311)

1100

Degree 6

Degree 5
Symbol Transvectant
E1111 (f,D2200)

1100

E1
3111 (f,D2200)

0100

E2
3111

(
f,D1

2202

)0101

E3
3111

(
f,D2

2022

)0011

E1
1311 (f,D2200)

1000

E2
1311 (f,D0202)

0001

E3
1311 (f,D0220)

0010

E1
1131

(
f,D1

0222

)0101

E2
1131

(
f,D2

2022

)1001

E3
1131 (f,D2020)

1000

E1
1113

(
f,D1

2022

)1010

E2
1113

(
f,D2

2022

)1010

E3
1113 (f,D0004)

0001

Symbol Transvectant
F0000 (f,E1111)

1111

F2200
(
f,E1

3111

)1011

F2020 (f,E1111)
0101

F2002
(
f,E1

1113

)0111

F0220
(
f,E1

1311

)1101

F0202
(
f,E3

1113

)1011

F0022
(
f,E1

1113

)1101

F 1
2220

(
f,E1

1311

)0101

F 2
2220

(
f,E2

1311

)0101

F 1
2202

(
f,E2

3111

)1010

F 2
2202

(
f,E3

3111

)1010

F 1
2022

(
f,E1

1113

)0101

F 2
2022

(
f,E2

1113

)0101

F 1
0222

(
f,E1

1131

)1010

F 2
0222

(
f,E2

1131

)1010

Symbol Transvectant

F4200
(
f,E1

3111

)0011

F4020
(
f,E2

3111

)0101

F4002
(
f,E2

3111

)0110

F0420
(
f,E3

1311

)1001

F0402
(
f,E2

1311

)1010

F0042
(
f,E1

1131

)1100

F2400
(
f,E1

1311

)0011

F2040
(
f,E1

1131

)0101

F2004
(
f,E1

1113

)0110

F0240
(
f,E1

1131

)1001

F0204
(
f,E1

1113

)1010

F0024
(
f,E1

1113

)1100
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Degree 7
Symbol Transvectant
G1

3111 (f, F2200)
0100

G2
3111 (f, F4002)

1001

G3
3111

(
f, F 1

2202

)0101

G1
1311 (f, F0402)

0101

G2
1311 (f, F2200)

1000

G3
1311 (f, F0202)

0001

G1
1131

(
f, F 1

0222

)0101

G2
1131

(
f, F 2

0222

)0101

G3
1131 (f, F2040)

1010

G1
1113

(
f, F 1

2022

)1010

G2
1113

(
f, F 2

2022

)1010

G3
1113 (f, F0202)

0100

Symbol Transvectant
G5111 (f, F4002)

0001

G1511 (f, F0402)
0001

G1151 (f, F2040)
1000

G1115 (f, F0024)
0010

G3311 (f, F2400)
0100

G3131
(
f, F 2

2022

)0001

G3113 (f, F4002)
1000

G1331 (f, F0240)
0010

G1313 (f, F0402)
0100

G1133
(
f, F 2

2022

)1000

Degree 8
Symbol Transvectant
H4000 (f,G5111)

1111

H0400
(
f,G1

1311

)1011

H0040 (f,G1151)
1111

H0004
(
f,G3

1113

)1110

H 1
2220

(
f,G1

1311

)0101

H 2
2220

(
f,G2

1311

)0101

H 1
2202

(
f,G3

3111

)1010

H 2
2202

(
f,G2

1113

)0011

H 1
2022

(
f,G1

1113

)0101

H 2
2022

(
f,G2

1113

)0101

H 1
0222

(
f,G1

1131

)1010

H 2
0222

(
f,G2

1131

)1010

Symbol Transvectant
H4200 (f,G5111)

1011

H4020 (f,G5111)
1101

H4002 (f,G5111)
1110

H0420
(
f,G1

1311

)1001

H0402 (f,G1313)
1011

H0042 (f,G1151)
1110

H2400
(
f,G1

1311

)0011

H2040 (f,G1151)
0111

H2004
(
f,G1

1113

)0110

H0240 (f,G1151)
1011

H0204
(
f,G1

1113

)1010

H0024
(
f,G1

1113

)1100
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Degree 9

Symbol Transvectant
I3111 (f,H4020)

1010

I1311
(
f,H 1

2220

)1010

I1131 (f,H0240)
0110

I1113 (f,H2004)
1001

I 1
5111 (f,H4020)

0010

I 2
5111 (f,H4002)

0001

I 1
1511 (f,H0402)

0001

I 2
1511 (f,H2400)

1000

I 1
1151 (f,H0240)

0100

I 2
1151 (f,H0042)

0001

I 1
1115 (f,H2004)

1000

I 2
1115 (f,H0024)

0010

Symbol Transvectant

I 1
3311

(
f,H 1

2220

)0010

I 2
3311

(
f,H 2

2220

)0010

I 1
3131 (f,H4020)

1000

I 2
3131

(
f,H 1

2220

)0100

I 1
3113 (f,H2004)

0001

I 2
3113

(
f,H 1

2022

)0010

I 1
1331 (f,H0240)

0010

I 2
1331

(
f,H 1

2220

)1000

I 1
1313 (f,H0204)

0001

I 2
1313

(
f,H 1

0222

)0010

I 1
1133 (f,H0024)

0001

I 2
1133

(
f,H 1

0222

)0100

Degree 10
Symbol Transvectant

J4200
(
f, I 1

5111

)1011

J4020
(
f, I 1

5111

)1101

J4002
(
f, I 1

3113

)0111

J0420
(
f, I 1

1331

)1011

J0402
(
f, I 1

1511

)1110

J0042
(
f, I 1

1133

)1101

J2400
(
f, I 1

1511

)0111

J2040
(
f, I 1

3131

)1101

J2004
(
f, I 1

3113

)1110

J0240
(
f, I 1

1331

)1101

J0204
(
f, I 1

1115

)1011

J0024
(
f, I 1

1115

)1101

Degree 11
Symbol Transvectant
K3311 (f, J4200)

1000

K3131 (f, J4020)
1000

K3113 (f, J4002)
1000

K1331 (f, J0420)
0100

K1313 (f, J0402)
0100

K1133 (f, J0042)
0010

K5111 (f, J4200)
0100

K1511 (f, J2400)
1000

K1151 (f, J2040)
1000

K1115 (f, J2004)
1000

Degree 12
Symbol Transvectant
L6000 (f,K5111)

0111

L0600 (f,K1511)
1011

L0060 (f,K1151)
1101

L0006 (f,K1115)
1110

Appendix B. Syzygies

The method of associated forms presented in section 6 gives all the syzygies up to degree 5.
In degree 6, one can check that, for example, the following two syzygies

D2
0000f

2 + 2D1
0000f

2 − 3
2B2200B0022B0000 + 3

2B2020B0202B0000 − 9
2D2200B0022 − 4

(
C2

1111

)2

− 9
2D0022B2200 − 8C1

1111C
2
1111 + 9

2D0220B2002 + 9
2D2002B0220 = 0
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(
C1

1111

)2
+ 3

4D1
0000f

2 − 9
8B2200B0022B0000 + 9

8B2020B0202B0000 − 9
4D2200B0022

+ 9
8D0202B2020 − 2

(
C2

1111

)2 − 9
4D0022B2200 − 2C1

1111C
2
1111

− 3
2D2020B0202 + 9

8D0220B2002 + 9
8D2002B0220 = 0

cannot be obtained by this method.
The second order syzygies arise in degree 7 and type (5333).

Appendix C. Invariants of the covariants

As already mentioned, the next step in the study of the four qubit system should be to find
geometrical interpretations of the simplest covariants. Partial information is already available,
as some of the fundamental covariants are of known types, for which the invariant theory
is reasonably well understood. Among these, the most important ones are certainly the six
biquadratic forms buv . A double binary form g(u, v) of bidegree (m, n) is usually interpreted
as defining a space curve, lying on the projective quadric XT − YZ = 0, which may be
parametrized by(

X Y

Z T

)
=

(
u1v1 −u1v0

−u0v1 u0v0

)
(C.1)

so that u and v parametrize the rectilinear generatrices. Such a curve has generically m
intersections with the generatrices of one system, and n with the generatrices of the other
one. The covariants buv can therefore be interpreted as six space quartics. It turns out that
these have the same discriminant, which is proportional to the hyperdeterminant used in [11].
The non-vanishing of the hyperdeterminant is therefore the condition for these curves to be
elliptic. On the normal forms of [21], it is easy to check that one has three isomorphisms
(bxy) 	 (bzt ), (bxz) 	 (byt ) and (bxt ) 	 (byz). Geometric interpretations of the complete
system of covariants of such forms of bidegree (2, 2) (which is due to Peano [13]) are available
in the works of Kasner [4] and Turnbull [20].

Other double binary forms of the same type occur as covariants in degrees 4 and 6.
There are also some simple binary forms among the covariants. Quartics, whose invariant

theory is completely understood, occur in degrees 4 and 8. We have already used the fact
that the common discriminant of the quartics in degree 4 was the hyperdeterminant [9].
The fundamental covariants in degree 12, the highest degree, are four binary sextics, whose
invariant of degree 2 is again the hyperdeterminant, as can be seen from the normal forms

L6000 = 144V (a2, b2, c2, d2)
(
x4

0 − x4
1

)
x0x1 (C.2)

L0600 = 96V (a2, b2, c2, d2)
(
y4

0 − y4
1

)
y0y1 (C.3)

L0060 = 288V (a2, b2, c2, d2)
(
z4

0 − z4
1

)
z0z1 (C.4)

L0006 = −96V (a2, b2, c2, d2)
(
t4
0 − t4

1

)
t0t1 (C.5)

where V denotes the Vandermonde determinant. One can see from this example that the normal
forms of [21] are simple enough to allow the complete calculation of all the fundamental
covariants. It is also interesting to observe that under the specialization Gabcd of [21], the
covariants buv come directly in Kasner’s normal form

k
(
u2

0v
2
0 + u2

1v
2
1

)
+ l

(
u2

0v
2
1 + u2

1v
2
0

)
+ 4mu0u1v0v1 (C.6)
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and that the three quadrilinear covariants occurring in degrees 3 and 5 are also in normal form.
Indeed,

C1
1111 = a1 + d1

2
x0y0z0t0 +

a1 − d1

2
x0y0z1t1 +

b1 + c1

2
x0y1z0t1 +

b1 − c1

2
x0y1z1t0

+
b1 − c1

2
x1y0z0t1 +

b1 + c1

2
x1y0z1t0

+
a1 − d1

2
x1y1z0t0 +

a1 + d1

2
x1y1z1t1

where

a1 = 3a3 − ad2 − ab2 − ac2

b1 = −bc2 − ba2 − bd2 + 3b3

c1 = −b2c + 3c3 − ca2 − cd2

d1 = −a2d + 3d3 − db2 − dc2

and

C2
1111 = a2 + d2

2
x0y0z0t0 +

a2 − d2

2
x0y0z1t1 +

b2 + c2

2
x0y1z0t1 +

b2 − c2

2
x0y1z1t0

+
b2 − c2

2
x1y0z0t1 +

b2 + c2

2
x1y0z1t0 +

a2 − d2

2
x1y1z0t0 +

a2 + d2

2
x1y1z1t1

where

a2 = 2ab2 + 2ac2 + 2ad2 + 6dbc

b2 = 2ba2 + 2bd2 + 2bc2 + 6cad

c2 = 2b2c + 6bad + 2ca2 + 2cd2

d2 = 2a2d + 6abc + 2db2 + 2dc2

and finally

E1111 = a3 + d3

2
x0y0z0t0 +

a3 − d3

2
x0y0z1t1 +

b3 + c3

2
x0y1z0t1 +

b3 − c3

2
x0y1z1t0

+
b3 − c3

2
x1y0z0t1 +

b3 + c3

2
x1y0z1t0 +

a3 − d3

2
x1y1z0t0 +

a3 + d3

2
x1y1z1t1

where

a3 = 8(−a3d2 − c2a3 − b2a3 + ac2d2 + ab2c2 + ab2d2)

b3 = 8(−b3c2 + bc2d2 + bc2a2 − b3d2 + ba2d2 − b3a2)

c3 = 8(ca2d2 + a2b2c + cb2d2 − b2c3 − c3d2 − c3a2)

d3 = 8(db2c2 + a2b2d + a2c2d − a2d3 − c2d3 − b2d3)

On the other hand, it seems that nothing is known about quadruple binary forms of
multidegree (3, 1, 1, 1), and the first thing to be done now is probably to set up a convenient
geometric representation of such forms.
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